
CSCI 210: Computer Organization

Lecture 11: Control Flow

Stephen Checkoway

Oberlin College

Oct. 27, 2021

Slides from Cynthia Taylor

Announcements

• Problem Set due Friday

• Lab 2 due Sunday

• Office Hours Friday 13:30 – 14:30

Today: Program control flow

• High level languages have many ways to control the order of

execution in a program: if, if-else, for loops, while loops

• Today we will look at how these higher order concepts are built

out of MIPS control flow instructions

Control Flow

• Recall the basic instruction cycle

– IR = Memory[PC]

– PC = PC + 4

• Both branch and jump instructions change the value of the

program counter

Control Flow - Instructions

• Conditional

– beq, bne: compare two registers and branch depending on the

comparison

– Change the value of the program counter if a condition is true

• Unconditional

– j, jal, jr: jump to a location

– Always change the value of the program counter

Control Flow - Labels

• In assembly, we use labels to help us guide control flow. Labels

can be the target of branch or jump instructions.

• Example:

j Label

…

Label: add $t1, $t0, $t2

• Assemblers are responsible for translating labels into

addresses.

if (X == 0)

X = Y + Z;

C Code

Assuming X, Y, and Z are integers in registers $t0, $t1,

and $t2, respectively, which are the equivalent assembly

instructions?

beq $t0,$zero, Label

Label: add $t0, $t1, $t2

bne $t0,$zero, Label

add $t0, $t1, $t2

Label:

A

B

D – None of these is correct.

beq $t0,$zero, Label

add $t0, $t1, $t2

Label:

C

If (x < y): Set Less Than

• Set result to 1 if a condition is true

– Otherwise, set to 0

• slt rd, rs, rt
– if (rs < rt) rd = 1; else rd = 0;

• slti rt, rs, constant
– if (rs < constant) rt = 1; else rt = 0;

• Use in combination with beq, bne
slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L

Branch Instruction Design

• Why not blt, bge, etc?

• Hardware for <, ≥, … slower than =, ≠

– Combining with branch involves more work per instruction

– beq and bne are the common case

slt $t2, $t0, $t1

bne $t2, $zero, x

addi $t0, $t0, 1

x: next instruction

A

High level code often has code like this:

if (i < j) {

i = i + 1;

}

Assume $t0 has i and $t1 has j. Which of the following is the correct translation of the

above code to MIPS assembly (recall $zero is always 0):

slt $t2, $t0, $t1

bne $t2, $zero, x

x: addi $t0, $t0, 1

next instruction

B C

slt $t2, $t0, $t1

beq $t2, $zero, x

addi $t0, $t0, 1

x: next instruction

D None of the above slt rd, rs, rt

if (rs < rt) rd = 1; else rd = 0;

Signed vs. Unsigned

• Signed comparison: slt, slti

• Unsigned comparison: sltu, sltui

slt vs sltu

$s0 = 1111 1111 1111 1111 1111 1111 1111 1111

$s1 = 0000 0000 0000 0000 0000 0000 0000 0001

slt $t0, $s0, $s1 sltu $t0, $s0, $s1

A $t0 = 1 $t0 = 1

B $t0 = 0 $t0 = 1

C $t0 = 0 $t0 = 0

D $t0 = 1 $t0 = 0

slt rd, rs, rt

if (rs < rt) rd = 1; else rd = 0;

Jump! Jump!

• j label

– Go directly to the label (i.e., PC = label)

• jr register

– Go directly to the label specified in the register

if(X == 0)

X = Y + Z;

else

X = Z + Z;

C Code

Assuming X, Y, and Z are integers in

registers $t0, $t1, and $t2,

respectively, which are the

equivalent assembly instructions?

bne $t0, $zero, x

add $t0, $t1, $t2

x: add $t0, $t2, $t2

A bne $t0, $zero, x

add $t0, $t1, $t2

j endif

x: add $t0, $t2, $t2

endif:

B bne $t0, $zero, x

j endif

add $t0, $t1, $t2

x: add $t0, $t2, $t2

endif:

C

D – None of the above

for (i = 0; i < 10; i++){

sum = sum + A[i];

}

C Code Assume the base address of A is

in $t0 and sum is in $s0.

Elements of A are words. What

is the equivalent assembly?

li $t2, 10

move $t1, $zero

for:beq $t1, $t2, end

lw $t3, $t1($t0)

add $s0, $s0, $t3

addi $t1, $t1, 1

j for

end:

A B

C – More than one of these

li $t2, 10

move $t1, $zero

for:beq $t1, $t2, end

lw $t3, 0($t0)

add $s0, $s0, $t3

addi $t0, $t0, 4

addi $t1, $t1, 1

j for

end:

D – None of these

How to access an array in a for loop

• Can’t programmatically change the offset

• Need to change the base address instead

• Add 4 to the base address every time you want to move up an

element of the array

for (i=0; i < 10; i++){

A[i] = 0;

}

move $s0, $zero

li $s1, 40

Loop: beq $s0, $s1, End

add $s4, $s3, $s0

sw $zero, 0($s4)

addi $s0, $s0, 4

j Loop

End:

*Assume base address of A is in $s3

Jump and Link

jal Label

– Address of following instruction put in $ra

– Jumps to target address

19

What is the most common use of a jal instruction and

why?

Most

common use

Best answer

A Procedure

call

Jal stores the next instruction in your current

function so the called function knows where to

return to.

B Procedure

call

Jal enables a long jump and most procedures are a

fairly long distance away

C If/else Jal lets you go to the if while storing pc+4 (else)

D If/else Jal enables a long branch and most if statements

are a fairly long distance away

E None of the above

Reading

• Next lecture: Procedures

– Section 2.9

• Problem set: Due Friday

• Lab 2: Due Sunday

